久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

    黄色成人在线看| 黄色a级片免费| 日本熟妇人妻xxxxx| 一级片黄色免费| 5月婷婷6月丁香| 久久久国产精华液999999| 欧美中日韩在线| 欧美男女交配视频| av之家在线观看| 久久av喷吹av高潮av| 少妇人妻互换不带套| 青草视频在线观看视频| 超碰超碰在线观看| 97成人在线观看视频| 一二三在线视频| 亚洲高清在线免费观看| 国产美女主播在线| 欧美aaa在线观看| 黄色手机在线视频| 日日噜噜噜噜久久久精品毛片| 91免费视频黄| 激情视频综合网| 日韩视频在线视频| 樱空桃在线播放| 欧美wwwwwww| 激情综合网俺也去| 日本少妇高潮喷水视频| www.日本在线视频| 五月天激情图片| 国内av免费观看| 九九热免费在线观看| 欧美激情精品久久久久久小说| 99在线免费视频观看| 欧美日韩一区二区三区电影| 亚洲图色中文字幕| 亚洲欧美在线精品| av网址在线观看免费| 日韩在线视频在线观看| 国产精品av免费观看| 国产成人三级视频| 爱爱爱视频网站| | 国产中文字幕乱人伦在线观看| 五月天开心婷婷| 亚洲色图 在线视频| 欧美a在线视频| 欧美爱爱视频免费看| aa在线观看视频| 国产av麻豆mag剧集| 99久久国产综合精品五月天喷水| 日韩小视频网站| 91免费黄视频| 国产视频一视频二| 116极品美女午夜一级| 黄色片久久久久| 日本爱爱免费视频| 欧美特黄aaa| 91亚洲一区二区| 国产在线拍揄自揄拍无码| 国产精品8888| 91黄色在线看| 少妇人妻大乳在线视频| 国产精品va无码一区二区| 欧美激情亚洲天堂| 三年中文在线观看免费大全中国| 一区二区xxx| 国产欧美激情视频| 成人短视频在线看| 国产精品无码免费专区午夜| 国产资源在线视频| 国产免费人做人爱午夜视频| 欧美一级裸体视频| 九九热视频免费| 国产精品av免费观看| 黄色网页免费在线观看| 久久午夜夜伦鲁鲁一区二区| 国产精欧美一区二区三区白种人| 精品视频在线观看一区二区| 菠萝蜜视频在线观看入口| 精品无码一区二区三区在线| 日韩欧美xxxx| 亚洲黄色片免费| 国产免费一区二区视频| 欧美日韩激情视频在线观看| 亚洲精品www.| 99久久免费观看| 国产视频一区二区三区在线播放| 在线播放黄色av| av免费看网址| 日本美女高潮视频| 成人短视频在线看| 欧美日韩在线视频一区二区三区| jizzzz日本| 成人黄色大片网站| www.激情小说.com| 成人国产在线看| 免费国产成人av| 香蕉视频免费版| 欧美亚洲精品一区二区| www欧美激情| 日b视频免费观看| 少妇性l交大片| 国产乱人伦精品一区二区三区| 99热成人精品热久久66| 国产精品av免费| 成人免费观看视频在线观看| 亚洲一区二区中文字幕在线观看| 日本中文字幕在线视频观看| 在线看的黄色网址| 日韩精品在线中文字幕| 尤物国产在线观看| 国产一级爱c视频| 91网址在线观看精品| 日韩精品视频一区二区在线观看| 天堂在线精品视频| 国产精品人人妻人人爽人人牛| 日本丰满少妇黄大片在线观看| www.国产区| 亚洲国产成人精品无码区99| 亚洲欧美一区二区三区不卡| 黄色av免费在线播放| 男女猛烈激情xx00免费视频| 97人人模人人爽人人澡| 亚洲 中文字幕 日韩 无码| a级黄色小视频| 午夜啪啪福利视频| 五月婷婷六月丁香激情| 日韩中文字幕三区| 欧美无砖专区免费| 亚洲国产精品影视| 91视频这里只有精品| 日韩免费毛片视频| 欧美午夜小视频| 加勒比海盗1在线观看免费国语版| 亚洲综合av在线播放| 午夜两性免费视频| 黄色片久久久久| 人妻少妇精品无码专区二区| 91看片淫黄大片91| www.久久com| 91pony九色| 日韩肉感妇bbwbbwbbw| 国产亚洲天堂网| 免费看日本毛片| 亚洲理论电影在线观看| 超薄肉色丝袜足j调教99| 成熟老妇女视频| 免费特级黄色片| 桥本有菜av在线| 中文字幕1234区| 亚洲精品视频三区| 久久久精品高清| 五月婷婷狠狠操| 中文字幕第三区| 欧美一级裸体视频| 91蝌蚪视频在线观看| 中文字幕欧美人妻精品一区| 男人天堂999| 成人在线观看a| 免费观看成人网| 黄色国产小视频| 婷婷丁香激情网| jizz欧美性11| 中文字幕1234区| 熟妇熟女乱妇乱女网站| 免费看av软件| 免费看日b视频| 9色porny| 男女激情无遮挡| 丰满少妇被猛烈进入高清播放| 黄色片视频在线播放| 欧在线一二三四区| 中文字幕 91| 中文字幕一区二区在线观看视频 | 好吊妞无缓冲视频观看| 青娱乐自拍偷拍| 久久国产乱子伦免费精品| 成人精品视频一区二区| 一路向西2在线观看| 在线观看国产一级片| 亚洲欧美一区二区三区不卡| 大陆极品少妇内射aaaaaa| 久久久久久www| 免费无码av片在线观看| 向日葵污视频在线观看| 国产喷水theporn| 毛片毛片毛片毛片毛片毛片毛片毛片毛片| 成人在线免费在线观看| 91热这里只有精品| 国产黑丝在线视频| 999一区二区三区| 色综合av综合无码综合网站| 亚洲 欧美 另类人妖| 亚洲第一页在线视频| 国产精品久久久久7777| 又色又爽又高潮免费视频国产| 超碰人人草人人| 美女黄色免费看| 91av俱乐部| 国产香蕉一区二区三区|